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Abstract. Phonation distortion leaves relevant marks in a speaker’s biometric
pro�le. Dysphonic voice production may be used for biometrical speaker charac-
terization. In the present paper phonation features derived from the glottal source
(GS) parameterization, after vocal tract inversion, is proposed for dysphonic voice
characterization in Speaker Veri�cation tasks. The glottal source derived param-
eters are matched in a forensic evaluation framework de�ning a distance-based
metric speci�cation. The phonation segments used in the study are derived from
�llers, long vowels, and other phonation segments produced in spontaneous tele-
phone conversations. Phonated segments from a telephonic database of 100 male
Spanish native speakers are combined in a 10-fold cross-validation task to produce
the set of quality measurements outlined in the paper. Shimmer, mucosal wave
correlate, vocal fold cover biomechanical parameter unbalance and a subset of the
GS cepstral pro�le produce accuracy rates as high as 99.57 for a wide threshold in-
terval (62.08-75.04%). An Equal Error Rate of 0.64 % can be granted. The proposed
metric framework is shown to behave more fairly than classical likelihood ratios
in supporting the hypothesis of the defense vs that of the prosecution, thus o�ering
a more reliable evaluation scoring. Possible applications are Speaker Veri�cation
and Dysphonic Voice Grading.

Keywords: Phonation, Speaker Recognition, Voice Production, Speech Processing.

Resumo. A distorção de fonação deixa marcas relevantes no per�l biométrico
de um falante. A produção de voz disfônica pode ser usada como caracterização
biométrica. Neste artigo, propõe-se a utilização de aspectos de fonação derivados
da parametrização da fonte glótica (FG), após a inversão do trato vocal, para ca-
racterização de voz disfônica em tarefas de veri�cação de locutor. Os parâmetros
derivados da fonte glótical são combinados em um sistema de avaliação forense
para de�nir uma especi�cação métrica baseada em distância. Os segmentos de
fonação utilizados no estudo são derivados de elementos de preenchimento, vo-
gais longas e outros segmentos de fonação produzidos em conversas telefônicas
espontâneas. Segmentos de fonação de um banco de dados telefônicos de 100
falantes nativos espanhóis do sexo masculino são combinados em uma tarefa de
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validação cruzada por 10 vezes para produzir o conjunto de medições de quali-
dade descrito neste artigo. Shimmer, correlato de onda mucosa, desequilíbrio de
parâmetro biomecânico de cobertura da prega vocal e um subconjunto dos per�s
de cepstrais de FG produzem taxas de precisão de até 99,57 para um largo in-
tervalo (62,08-75,04%). Uma Taxa de Erros Iguais de 0,64% pode ser concedida.
Demonstra-se que a estrutura métrica proposta comporta-se de forma mais justa
do que a clássica razão de verossimilhança para apoiar a hipótese da defesa vs
a do promotor, oferecendo assim um escore de avaliação mais con�ável. As apli-
cações possíveis são Veri�cação de Locutor e Graduação de Voz Disfônica.

Palavras-chave: Fonação, Reconhecimento de Falante, Produção de Voz, Processamento de Fala.

Introduction
Voice Pathology has been profoundly studied and characterized in the past decade (De-
jonckere, 2010; Hakkesteegt et al., 2010; Roy et al., 2013). Most of the advances produced
in the detection and grading of pathology can be applied in other �elds such as forensic
speaker recognition. In this article phonation features derived from the parameteriza-
tion of the glottal source after the vocal tract inversion is proposed for dysphonic voice
characterization in speaker veri�cation tasks (Gomez-Vilda et al., 2012), where the glottal
source can be seen as a correlate of pressure build up in the glottis.

Phonation is the activity of voice production as a consequence of vocal fold vibration.
It is present in speech, in voiced sounds, although speech is composed of both voiced
and voiceless sounds, and the latter sounds are not based on phonation. Phonation must
be seen as a biometrical mark of the person, similar to other behavior-based activities,
such as gait, or writing. It presents several advantages with respect to speech as a study
signal, in the sense that the vocal tract transfer function in speech is interfering with
phonation biometry by introducing articulation features, which increment intra-speaker
variability.

Phonation may be classi�ed into the following overlapping groups:

• Normophonic, which is de�ned by the presence of a stable fundamental fre-
quency in sustained vowels, stable intensity and long phonation capability, ab-
sence of roughness, absence of breathiness, and e�ortless voice production. Be-
sides, it is characterized by clear and precise open and closed phases of the vocal
folds, large Maximum Flow Declination Rate, and good extension of harmonic
spectrum, extending over 5 KHz. The instrumental exploration of the larynx
must not reveal organic or anatomical defects or lesions.

• Dysphonic, non organic, which is de�ned by the presence of perceptual acous-
tical features related to unstable or asymmetric phonation, such as presence of
roughness, air in voice or strain, showing an irregular or too short vocal fold
closed phase. The extension of the harmonic spectrum may not reach 4 KHz.
Nevertheless the instrumental exploration of the larynx does not reveal organic
defects or lesions, although anatomical defects may be present, as a certain de-
gree of asymmetry.

• Pathologic, organic, which is de�ned by perceptual phonation defects a�ecting
stability of fundamental frequency and intensity, shorter phonation capability,
and roughness, air in voice, weak voice, and a�ected short harmonic spectrum,

43



Gómez, P. et al. - Using Dysphonic Voice to Characterize Speaker’s Biometry
Language and Law / Linguagem e Direito, Vol. 1(2), 2014, p. 42-66

usually not extending over 2 kHz. Instrumental exploration of the larynx will
reveal speci�c defects or lesions, as nodules, polyps, cysts, edemae, granulomae,
sulci, carcinomae, etc.

• Pathologic, neurological, which is de�ned by perceptual phonation defects as in
the organic case, but in this group the instrumental inspection of the larynx will
not reveal speci�c organic defects or lesions, although vocal folds will not show
a regular vibration pattern, and many times vocal fold vibration asymmetry is
present, a�ecting one of the vocal folds (unilateral paresis), or both vocal folds.
Other forms of irregularity may a�ect the stability of phonation (spasmodic dys-
phonia). Frequently the etiology of the irregularity remains unclear.

The burning question is to what extent dysphonic voice may be present in a given
speaker. In other words, to what extent normophonic voice is the norm in a sample of
a general population. This extent is di�cult to assess, and depends on how strict the
speci�cation for the term normophonic is established. Besides, the phonation capability
of a speaker will vary strongly during a lifetime, progressively degrading with age to be-
come a presbyphonic voice during the third age in most of the population, characterized
by an increment in roughness, breathiness and asthenia, depicting a creaky phonation
condition. It must be taken into account that many people su�er from a higher degree of
phonation deterioration due to speci�c habits such as smoking, drinking or drug abuse,
or to the consequence of larynx in�ammatory processes (�u, cough, and other respira-
tory diseases), or simply from voice abuse (contact center professionals, actors, speakers,
dealers, etc.). Thus, it may be said that phonation conditions are better during youth,
and start to degrade with age. Therefore, it is really hard to establish the population
percentage corresponding to each group.

It is very important to determine the characteristics of normophonic voice produc-
tion, since even in that case, small irregularities may be expected in the main features
mentioned, as stability in frequency and intensity, regular and symmetric fold vibration,
perfect and complete open and closed phases, and timbre spectrum, making phonation a
speci�c personal print. Even under perfect phonation conditions population di�erences
exist, opening the possibility to use phonation features as biometrical marks.

The main phonation features resulting from biometrical di�erences are due to very
speci�c physiological causes, and can be grouped into these two classes (Gómez et al.,
2013):

• Vocal fold vibration asymmetry
• De�cient glottal closure during the closed phase (contact phase)

The physiological reasons conditioning phonation features are summarized in Fig-
ure 1.

The template in Figure 1.a shows the vocal folds as two vertical bands united in the
anterior side of the cricoid process (upper part of each sketch), separated in the posterior
side (lower part of each sketch), leaving a space for the free �ow of air to and from lungs.
In Figure 1.b the vocal folds are shown together closing the glottis (contact phase), due
to the action of the transversal and oblique laryngeal and crico-arytenoid muscles. The
�ow of air is stopped. In Figure 1.c the vocal folds are still united in the posterior part
of the glottis under the action of the laryngeal muscles, but the pressure built up in the
lungs has taken them apart (abduction), leaving a glottal space through with air can
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Figure 1. Vocal fold simpli�ed situations: a) Open glottis in breathing; b) closed phase
(contact phase) as part of the phonation cycle; c) open phase as part of the phonation
cycle; d) de�cient closure in the posterior third of the glottis, showing a permanent
gap; e) asymmetric contact defect; f) de�cient closure in the medial third, due to a
bilateral lesion (nodules). Contact defects during the contact phase may be produced
by other lesions (unilateral or bilateral). In all the plots the anterior part of the glottis
is depicted upwards. (Figures produced by authors.)

�ow from lungs to pharynx (open phase). The situations described in a), b) and c) are
considered normal in the behavior of a healthy larynx. In the lower row some defects
are described related with the contact phase. For instance, in Figure 1.d both vocal folds
are not completely closed at the posterior side, therefore an air escape is to be expected.
In Figure 1.e the incomplete closure is due to an asymmetry a�ecting mainly one of the
vocal folds (unilateral paralysis). In Figure 1.f the contact is compromised by a bilateral
lesion in the contact surface of the vocal folds, as in the case of nodules, for instance.
The closure is not perfect and an escape of air is to be expected. Pictures of these contact
defects from actual endoscopic recordings taken during the contact phase are presented
in Figure 2.

The situations described in d), e) and f) produce observable correlates in the air �ow
and pressure build up in larynx, and propagate to the signal recorded by a microphone
as phonated speech. Therefore, the contact defects will leave a biometrical mark in the
phonation of a speaker if any of these defects is present to a greater or lesser extent.
The behavior of the biometrical mark may be inferred from Fant’s source-�lter model
illustrated in Figure 3 (Fant, 1997).

Voiced speech (phonation) is produced by a glottal excitation model, resulting from
vocal fold vibration. The pressure build up in the vocal folds (glottal source) propagates
through the vocal tract (or more properly, the oro-naso-pharyngeal tract) to reach the
mouth or nostrils (depending on nasalization) to be radiated as a signal Sr(n) reaching
a microphone or other recording device. Voiceless speech is produced by frictional air
turbulence (turbulent source) resulting from fast air�ow in speci�c parts of the vocal
tract (vocal folds, pharynx, tongue, teeth, lips. . . ). Either glottal source, or turbulent
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Figure 2. Pictures illustrating contact defects: Left picture: de�cient closure in the
posterior third of the glottis as a result of bilateral nodules. Middle picture: Unilateral
contact defect due to a right vocal foldReinke’s edema. Right picture: bilateral contact
defect in an hourglass pattern showing anterior and posterior gaps. Anterior section
of larynx upwards (Photos provided by the ENT Services of Hospital Universitario
Gregorio Marañón of Madrid.)

Figure 3. Fant’s source-�lter model to explain speech production. (Figure produced
by authors)

�ow, or both, will be the cause of the speech signal radiated. The resulting spectrum of
the radiated signal (Figure 3, low row, right) will be the consequence of the application
of the vocal tract transfer function (Figure 3, low row, middle) on the source spectrum
(Figure 3, low row, left). Fant’s model inspires the methodology to reconstruct the glottal
source from phonated speech. The methodology consists in removing the in�uence of
the radiation model and the vocal tract transfer function by inverse �ltering by di�erent
methods. The one used in the present study is described in Gómez-Vilda et al. (2009),
and is summarized in Figure 4.

The speech signal s(n) is �rst processed (1) to eliminate the in�uence of radiation
and other undesirable e�ects due to channel characteristics. The radiation-compensated
signal sl(n) is �ltered by a lattice-ladder mirror �lter (2) which is designed to remove
partially the in�uence of a hypothesized glottal source, generating a signal svi(n) which
is mainly characterized by the vocal tract. This signal is modeled (4) to obtain the inverse
signature of the vocal tract, which will be applied to the radiation-compensated signal
sl(n) to remove the in�uence of the vocal tract (5). The resulting signal sri(n) will be
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Figure 4. Methodology for the reconstruction of the glottal source from segments of
phonated speech by recursive inverse adaptive �ltering. (Figure produced by authors.)

dominated by the glottal features, and may be modeled (3) to produce a better inverse
estimate of the glottal features, and injected in (2) to produce also a better estimate of
svi(n). The recursion is iterated a low number of times, and the glottal residual sri(n)
will be used to produce the glottal source by numerical integration. An example of the
glottal source reconstruction is shown in Figure 5.

It may be seen that the reconstructed glottal residual sri(n) in Figure 5.b is the result
of removing vocal tract resonances found in the original speech signal s(n). In particular
the presence of the �rst resonance (formant) may be seen as a ringing (successive os-
cillations) taking place during each of the 17 pseudo-periodical glottal cycles extending
over slightly more than 180 ms in Figure 5.a. The residual sri(n) is numerically inte-
grated to produce the glottal source in Figure 5.c, which shows the main features of the
pressure build up in the glottis. The main feature as far as the harmonic spectral con-
tents of speech are concerned, is the maximum �ow declination rate (MFDR), which is
the negative drop of pressure signaled by red asterisks due to the closing phase. The
glottal source is restored to its quiescent value (0) following a recovery pattern to reach
a plateau, marking the duration of the contact phase. During the open phase, a pressure
increment can be appreciated to reach a maximum, after which a sharp drop to reach
the MFDR may be appreciated (closing phase). Finally in Figure 5.d a series of patterns
showing the successive glottal �ow cycles may be seen.

Once the glottal source has been reconstructed it is being parameterized according
to di�erent techniques in the time as well as in the frequency domain. The parameters
are evaluated for each of the phonation cycles in the speech segment being analyzed
(typically between 50 and 200 ms long). For male voice, between 5-20 glottal cycles are
to be found in such an interval. Cycle-synchronous estimations of each parameter are
stored in an array, average values and standard deviations are also evaluated. In what
follows a brief description of these techniques and the resulting parameters is given:
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Figure 5. Example of glottal source and �ow reconstruction from phonated speech:
a) original speech signal (s); b) glottal residual sri(n), or derivative of the forward
pressure wave; c) reconstructed glottal source (correlate of the pressure build up in
the glottis); d) reconstructed glottal �ow. (Figure produced by authors.)

• Perturbation parameters. These are a group of time-domain parameters related
with voice quality, as the fundamental frequency f0, the jitter (relative �uctua-
tions of the glottal source period), the shimmer (relative �uctuations of the glottal
source amplitude for each glottal cycle), the absolute minimum sharpness (value
of the MFDR), the noise to harmonic energy contents (HNR), or the ratio between
the higher glottal source components to the �rst-order glottal source component
(MAE). These parameters are given in Table 1.

Perturbation parameters
1. Absolute Pitch
2. Abs. Norm. Jitter
3. Abs. Norm. Ar. Shimmer
4. Abs. Norm. Min. Sharp (MFDR)
5. Noise-Harm. Ratio (NHR)
6. Muc./AvAc. Energy (MAE)

Table 1. Perturbation parameters.

• Cepstral parameters. This group consists in a collection of 14 parameters directly
estimated from the cepstral description of the glottal source. The estimation pro-
cess consists in generating the Fourier power spectrum of the glottal source. The
cosine transform is applied to the logarithm of this spectrum and the �rst 14
resulting parameters are selected. Some of these parameters are extremely sen-
sitive to certain factors such as gender or age (Muñoz, 2014). The parameters are
listed in Table 2.
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Cepstral Parameters
7. MWC Cepstral 1
8. MWC Cepstral 2
9. MWC Cepstral 3
10. MWC Cepstral 4
11. MWC Cepstral 5
12. MWC Cepstral 6
13. MWC Cepstral 7
14. MWC Cepstral 8
15. MWC Cepstral 9
16. MWC Cepstral 10
17. MWC Cepstral 11
18. MWC Cepstral 12
19. MWC Cepstral 13
20. MWC Cepstral 14

Table 2. Cepstral parameters.

• Spectral parameters. The spectral pro�le of the glottal source is conditioned by
the biomechanical behavior of the vocal folds, especially the visco-elastic link
between the fold body (musculus vocalis) and the epithelial cover and conjunc-
tive tissues in Reinke’s space. The envelope of the harmonic spectrum of the
glottal source shows peaks and valleys which are in�uenced by this biomechan-
ical behaviour. Anomalous relations among these peaks and valleys may serve
as biometrical markers. The �rst group of parameters given in Table 3 are am-
plitude estimates of the peaks and valleys (21-27). The second group give their
relative positions in frequency (28-32). Parameters 33 and 34 give the depth of
the two �rst valleys relative to their frequency span (slenderness).

Spectral Parameters
21. MW PSD 1st Max. ABS.
22. MW PSD 1st Min. rel.
23. MW PSD 2nd Max. rel.
24. MW PSD 2nd Min. rel.
25. MW PSD 3rd Max. rel.
26. MW PSD End Val. rel.
27. MW PSD 1st Max. Pos. ABS.
28. MW PSD 1st Min. Pos. rel.
29. MW PSD 2nd Max. Pos. rel.
30. MW PSD 2nd Min. Pos. rel.
31. MW PSD 3rd Max. Pos. rel.
32. MW PSD End Val. Pos. rel.
33. MW PSD 1st Min NSF
34. MW PSD 2nd Min NSF

Table 3. Spectral parameters.
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• Biomechanical parameters. The spectral behavior of the glottal source is directly
related to the distribution of mass and visco-elasticity of the vocal fold body
and cover. A methodology to estimate the distribution of mass and sti�ness
of each structure is possible using spectral matching techniques (Gómez-Vilda
et al., 2007). The most signi�cant estimates are the mass and sti�ness of the vo-
cal fold body and cover, the ratio of energy losses due to viscid and turbulent
�ow behavior, and their respective unbalances. These are estimated using rela-
tive comparisons of mass, sti�ness and losses from neighbor glottal cycles. The
list of estimated parameters is given in Table 4.

Biomechanical Parameters
35. Body Mass
36. Body Losses
37. Body Sti�ness
38. Body Mass Unbalance
39. Body Losses Unbalance
40. Body Sti�ness Unbalance
41. Cover Mass
42. Cover Losses
43. Cover Sti�ness
44. Cover Mass Unbalance
45. Cover Losses Unbalance
46. Cover Sti�ness Unbalance

Table 4. Biomechanical parameters.

• Temporal parameters. The glottal cycle is divided into a closed phase and an
open phase. The time instants associated with the start of the closed and open
phase, as well as the time required to reach the quiescent pressure (recovery)
and the maximum amplitude of the glottal source relative to the MFDR are esti-
mated as important parameters in the time domain. Due to irregularities in the
glottal source time pro�le, the recovery and open instants are estimated twice to
produce more robust results. The open and closed instants, as well as the start
of the closing phase are also estimated on the �ow signal. The list of temporal
parameters is given in Table 5.

• Glottal gap parameters. This set of parameters is designed to evaluate the contact
defects, directly on the �ow, calculating the ratio of air escape during the con-
tact phase relative to the air escape during the open phase (59), or on the glottal
source, in which case the defects are di�erentiated as contact, adduction or per-
manent ones, depending to which phase of the glottal cycle they a�ect. The list
of the parameters is given in Table 6.

• Tremor parameters. The sti�ness of the vocal fold body (musculus vocalis) is
directly in�uenced by the neuromotor action of the laryngeal muscles, therefore,
many neurological pathologies may be characterized from the estimates of this
sti�ness (parameter 37). Hypo-tonic or hyper-tonic deviations of this parameter
are important correlates in Parkinson’s Disease, for instance, as well as tremor.
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Temporal Parameters
47. Rel. Recov. 1 Time
48. Rel. Recov. 2 Time
49. Rel. Open 1 Time
50. Rel. Open 2 Time
51. Rel. Max. Ampl. Time
52. Rel. Recov. 1 Ampl.
53. Rel. Recov. 2 Ampl.
54. Rel. Open 1 Ampl.
55. Rel. Open 2 Ampl.
56. Rel. Stop Flow Time
57. Rel. Start Flow Time
58. Rel. Closing Time

Table 5. Temporal parameters.

Glottal GAP Parameters
59. Val. Flow GAP
60. Val. Contact GAP
61. Val. Adduction GAP
62. Val. Permanent GAP

Table 6. Glottal GAP parameters.

A set of six parameters is devoted to track this disease. The �rst three give a
description of the tremor in terms of its autoregressive modeling (63-65). The
last ones give the tremor frequency in cycles/s (66), the reliability of this estimate
(67), or the tremor amplitude in root mean square relative to the vocal fold body
average amplitude (68). The list of tremor parameters is given in Table 7.

Tremor Parameters
63. 1st. Order Cyc. Coe�.
64. 2nd. Order Cyc. Coe�.
65. 3rd. Order Cyc. Coe�.
66. Tremor Frequency
67. Estimation Reliability
68. Tremor rMS Amplitude

Table 7. Tremor parameters.

The interested reader can �nd a more detailed description of each parameter mean-
ing and distribution in Gómez et al. (2013).

Materials and methods
The purpose of the present research was to describe a methodology to parameterize the
glottal source in terms of dysphonic voice and to study how to apply these parameters
in speaker veri�cation tasks. For this purpose a database of GSM-quality recordings
from telephone conversations by 100 male speakers was used. Speech was recorded
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at 8 KHz 16 bits and mu-law. Each conversation lasted between 5 and 30 min., �llers
and long vowels were extracted from them. These long vowels were samples of vowels
[a], [æ], [ε] and [e]. For classi�cation purposes, the �rst two groups were labelled as
/a/, whilst the last two groups were labelled as /e/. This last group covers most of the
�llers which may be found in Spanish, consisting in lengthening of words as “de” or
“que”, or spontaneous insertions of /e/. An average of 6-8 of these �llers may be found
in recordings of hesitating statements along a duration of 1-2 minutes. Fillers and long
vowels were segmented as 100 ms fragments, and 68 parameters were obtained from
each glottal cycle in the fragment. The resulting feature database is a matrix referred to
as Zt.

Three experiments are described in this paper, the �rst oriented to provide full com-
patibility of parameter distributions of phonations from /a/ against phonations from /e/.
This experiment is described in this section. The second experiment is designed to select
a database of normative speakers from telephone quality recordings based in /e/ by con-
trasting the available telephone recordings with a normative database from high quality
recordings. The selected normative speakers will be used as a control group in future
work. The third experiment is designed to match telephone-quality /e/ recordings from
the normative speakers against themselves to test the forensic matching capability of
the methodology and to produce sensitivity and speci�city estimates for the matching
protocol.

The �rst experiment consisted in confronting the distributions of each parameter in
Zt=[Zta Zte] from the /a/-group Zta and the /e/-group Zte to check their degree of equiv-
alence. The null hypothesis consisted in assuming the equivalence of distributions. The
histograms for the fundamental frequency f0, jitter, shimmer, body mass and sti�ness,
and cover mass and sti�ness are given in Figures 6 to 9.

Figure 6. Comparison of the histograms of f0 from the /a/-group vs the /e/-group: The
null hypothesis cannot be rejected given the distribution overlap (Figure produced by
authors.)

The second experiment consisted in dividing the speakers in the database Zta in
two subsets of 50 speakers each (Ztan and Ztad) according to the degree of dysphonia
present in their phonations confronting the whole speaker set with a normative set of
50 normophonic speakers selected and inspected at the ear, neck and throat service of
Hospital Gregorio Marañón in Madrid. Normophonic speakers were inspected by video-
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Figure 7. Comparison of the histograms of jitter and shimmer from the /a/-group vs
the /e/-group: The null hypothesis cannot be rejected given the distributions overlap.
(Figure produced by authors.)

Figure 8. Comparison of the histograms of bodymass and sti�ness from the /a/-group
vs the /e/-group: The null hypothesis cannot be rejected given the distributions over-
lap. (Figure produced by authors.)

Figure 9. Comparison of the histograms of cover mass and sti�ness from the /a/-
group vs the /e/-group: The null hypothesis cannot be rejected given the distributions
overlap. (Figure produced by authors.)
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endoscopy to discard any organic problem in their larynx, and their non-dysphonic con-
dition was assessed by the GRBAS test (Hirano, 1981). Fragments of phonations of vowel
/a/ lasting 200 ms from the normative set of speakers taken at 44100 Hz and 16 bits were
parameterized and used as a normative model (Zman) in the task of grading the /a/-group
from GSM-quality recordings.

The third experiment was to match the features from each speaker in the subset of 50
normophonic males of the /e/-grou and telephone quality (Zten) against his own feature
set as target, and against the other 49 as imposters using the matching methodology
to be described in what follows. The �llers from each speaker used in the matching
as questioned tokens and the target set used as suspects’ set were generated from two
di�erent recording sessions.

For the second experiment the membership of each speaker to the normophonic or
dysphonic group was assessed using the log likelihood ratio between the conditioned
probability of membership of a speci�c speaker si with feature set ztai relative to the
normative Gaussian mixture model (GMM) de�ned as Γman = wman, µman, Cman built
on the normative feature dataset Zman, where wman, µ man and Cman are the mixture
weights, the average vector and the covariance matrix of the dataset. The de�nition of
the normophonic membership log likelihood may be estimated as:

where the conditioned membership probability will be given as:

where k is the order of the GMM, and mk is the size of each Gaussian cluster.
In turn, the speaker matching methodology used in the third experiment was de-

signed to estimate to which extent acoustic evidence from speaker si (ztei, considered
the questioned evidence) against acoustic evidence from speaker sj (Γtej , built on the
suspect’s evidence ztej) can modify the degree of conviction (gain of belief) in favour or
against the suspect in relation with the case. This gain of belief is formulated as a log like-
lihood between the conditioned probability of ztei being produced by the GMM model
Γtej relative to the conditioned probability of ztei being produced by any foil speaker
from a line-up set characterized by the GMM model Γten. This log likelihood ratio is a
rephrasing of the balanced reasons method established by C. S. Peirce (1878), formulated
as the conditioned probability of the prosecutor’s hypothesis vs the defender’s hypoth-
esis (see Taroni et al. 2006; Gomez-Vilda et al. 2012:

where E is the evidence (questioned), Hp is the prosecutor’s hypothesis (questioned
evidence being produced by the suspect), and Hd is the defender’s hypothesis (questioned
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evidence being produced by any other speaker). In this way the a priori probability Vpr

in favour of Hp will be ampli�ed or attenuated by the gain of belief Lpd (likelihood ratio)
to produce the a posteriori probability Vpt. The log likelihood ratio may be estimated as:

and the conditioned probabilities evaluating the prosecutor’s and defender’s hypotheses
are given as:

It must be noted that in the third experiment the questioned and the suspect ev-
idence were derived from individual speakers in the /e/-group normative feature set
Zten, whereas the line-up feature set was generated using the whole feature set Zten.
The results of the second and third experiments will be commented on in the section
entitled “Validation and Sample Matching Results”.

Another relevant aspect has to do with the selection of the parameters considered
most relevant for dysphonia assessment or speaker matching. This procedure will be a
premise to be incorporated into any of these procedures prior to the conditional probabil-
ity estimation. The feature selection carried out was based on the evaluation of Fisher’s
discriminant ratios (Kim et al., 2005), de�ned as:

where µki and µkj are the sample averages of subsets i and j for parameter k, ζki and ζkj
are the sample standard errors of subsets i and j, also for parameter k, and ni and nj are
the respective subset sample sizes. To select the most relevant features a comparison of
subset distributions is carried out, and only the most relevant features are included in
the posterior analysis. An example is given in Figure 10.

Finally the issue of speaker match metrics is to be addressed. When estimating log
likelihood ratios following (4), (5) and (6), if feature datasets can be grouped in a low
number of clusters, log likelihood ratios can be expressed in terms of normalized dis-
tances among the questioned (test), suspect (control) and line-up (model) centroids, as
shown in Figure 11.

55



Gómez, P. et al. - Using Dysphonic Voice to Characterize Speaker’s Biometry
Language and Law / Linguagem e Direito, Vol. 1(2), 2014, p. 42-66

Figure 10. Parameter selection based on Fisher discriminant analysis: Upper tem-
plate: boxplots of the most relevant parameters comparing the normophonic feature
subset (green) against the dysphonic one (red). It may be seen that most of the distri-
butions show low overlap, and small extent (being the conditions to produce a large
Fisher’s ratio as given by (7)). Lower template: Values of Fisher’s ratios. (Figure pro-
duced by authors.)

Figure 11. 3D description of evidence matching from a practical case in terms of the
three most relevant features derived from Fisher’s analysis in Figure 10: The ques-
tioned evidence is grouped as the test subset (blue squares). The suspect’s evidence
is grouped as the control subset (red diamonds). The line-up data is grouped as the
model subset (green circles). Each subset centroid is signaled by a larger circle, dia-
mond or square. A simple visual inspection allows inferring that the clusters of ques-
tioned and suspect evidence are much closer between themselves than to the line-up
cluster. (Figure produced by authors.)
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The 3D plot may be seen as the expression of the projection from an 18-dimensional
vector space de�ned in terms of the 18 selected features to a 3-dimensional subspace in
terms of the 3 most relevant ones. Reducing clusters to centroids allows de�ning the log
likelihood as a normalized distance balance given by:

where DTM is the normalized distance between the centroids of the questioned evidence
set to the model set, and DTC is the distance between the centroids of the questioned
and suspect evidence. The centroids of the three sample sets (test, control and model)
de�ne the match triangle CTM as depicted in Figure 12.

Figure 12. Match triangle de�ned by the test, control and model centroids on the 2D
plane projection of a 3D description of evidence matching in similar terms to the one
given in Figure 11. (Figure produced by authors.)

It may be seen that the centroids of clusters T (questioned), C (suspect) and M (line-
up) de�ne a plane intersecting the three feature axes xi, xj and xk at the points I, J and K.
This property allows summarizing the matching results in a balanced chart as the one
given in Figure 13.

The Mahalanobis normalized distances between each two centroids C, T and M
de�ning the match triangle, MDTC, MDTM and MDCM as seen in Figure 13 can be used
to establish the relationship between questioned, suspect and model evidence. It is clear
that the vertical axis in the �gure is the place of all possible solutions which share the
condition of DT C=DTM , for which the log likelihood will be null (λpd=0: neutral deci-
sion). The right hand plane de�ned by the vertical axis will de�ne the place of all possible
solutions where DT C>DTM , therefore the log likelihood will be negative (λpd<0: deci-
sion favoring the defender’s hypothesis). The left hand plane de�ned by DT C<DTM will
correspond to positive log likelihood ratios (λpd<0: decision favoring the prosecutor’s
hypothesis). Nevertheless, the decision cannot be based on just crossing the vertical line
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Figure 13. Balanced chart summarizing the match between questioned and suspect
evidence relative to the line-up model. (Figure produced by authors.)

to accept the prosecutor’s hypothesis, as this threshold would be unfair with respect to
the guarantees due to the legal defense of the suspect. A more conservative threshold
decision should be used. Accordingly with Daubert rules (see U.S. Supreme Court, 1993)
accepting and evaluating the strength of evidence should be left to the Court. However,
it is generally accepted by the European Network of Forensic Science Institutions that
this kind of scale would be of useful application to grade the strength of the evidence to
help the decision of the Court. A reasonable scale can be found in Lucy (2005), and is
reproduced in Table 8.

There is another important detail regarding expression (8) and Figure 13, which con-
cerns situations where DT C>>DCM and DTM>>DCM . This ill-conditioned case hap-
pens when questioned and suspect evidence are far apart from the line-up data, and
would indicate a bad selection of the line-up. In this unfair situation accepting results in
the left hand side (DT C<DTM ) would break the guarantee of a fair evaluation, helping
to produce a decision in favor of the prosecutor’s hypothesis although the line-up has
not been well selected. For this reason, the boundary signaled by the pink dash ellipse
corresponding to the place of the points meeting the condition:

has been de�ned as a protection boundary. No match should be accepted as valid if the
questioned centroid appears beyond the limits of the guarantee boundary thus de�ned.

Detection and Matching Results
In the present section an account of the results obtained for the second and third exper-
iments, as described in the above section will be given. The summarized characteristics
and objectives of each experiment are given below.

Second experiment description:
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Range (decimal log) Range (natural log) Statement
ϑlg < 0 ϑln < 0 Likelihood unconditionally sup-

ports the hypothesis that the ques-
tioned and the suspect evidence
have not been produced by the
same speaker (favoring defender’s
hypothesis)

0 ϑlg < 1 0 ϑlg < 2,3026 Likelihood weakly supports the hy-
pothesis that the questioned and the
suspect evidence have been produced
by the same speaker (favoring prose-
cutor’s hypothesis)

1 ϑlg < 2 2,3026 ϑlg < 4,6052 Likelihood mildly supports the hy-
pothesis that the questioned and the
suspect evidence have been produced
by the same speaker (favoring prose-
cutor’s hypothesis)

2 ϑlg < 3 4,6052 ϑlg < 6,9078 Likelihood moderately supports the
hypothesis that the questioned and
the suspect evidence have been pro-
duced by the same speaker (favoring
prosecutor’s hypothesis)

3 ϑlg < 4 6,9078 ϑlg < 9,2103 Likelihood strongly supports the hy-
pothesis that the questioned and the
suspect evidence have been produced
by the same speaker (favoring prose-
cutor’s hypothesis)

ϑlg ≥ 4 ϑlg ≥ 9,2103 Likelihood very strongly supports
the hypothesis that the questioned
and the suspect evidence have been
produced by the same speaker (favor-
ing prosecutor’s hypothesis)

Table 8. Strength of evidence according to Lucy (2005).

• Splitting the 100 male speakers into two equal-sized subsets according to their
normophonic condition.

• Using a normative database validated by Hospital Gregorio Marañon in Madrid
with samples of /a/ (50 male speakers).

• Log likelihood ratios according to (1) and (2) estimate the conditional probabil-
ity of a given sample being normophonic or dysphonic (10-fold cross-validation,
taking 47 subjects, leaving 3 in each set of normophonics and dysphonics per
run).

Second experiment objectives:
• Estimate the discrimination accuracy of the methodology and the most relevant

parameters.

59



Gómez, P. et al. - Using Dysphonic Voice to Characterize Speaker’s Biometry
Language and Law / Linguagem e Direito, Vol. 1(2), 2014, p. 42-66

• Produce two reference subsets from GSM quality from the /e/-group of use in
Spanish.

Second experiment results:
• The normophonic vs dysphonic cumulants, sensitivity, speci�city and accuracy,

and Detection-Error Trade-o� plots are given in Figure 14.

Figure 14. a) False normal vs false dysphonic cumulants. b) Associated Tippet plots.
c) Sensitivity, speci�city and accuracy for the second experiment. d) Detection-error
trade-o� curve. (Figure produced by authors.)

The detection procedure consists in generating a vector with the log likelihood ratios
generated for each sample, and their assumed condition of normophonic or dysphonic.
The log likelihood span is normalized as a percentage, and a moving threshold scans it
from 0 to 100%. For each value scanned the number of false normophonics (samples an-
notated as dysphonic but quoted as normophonic because their log likelihood is over the
threshold) and false dysphonics (samples annotated as normophonic but quoted as dys-
phonic because their log likelihood is under the threshold) is annotated and plotted. See
that the number of false normophonics diminishes as the threshold moves rightwards
in Figure 14.a to reach the point 1, where the number of false normophonics is very low
(only 3 cases out of 470 possible ones), whereas the number of false dysphonics is still
0. At point 8 this number starts raising to 4 out of 470, whereas the number of false
normophonics has decreased to 0, indicating that the optimal detection conditions are
somewhere between 1 and 8, keeping both false detections at a minimum value simulta-
neously. This fact indicates that there are two di�erent distributions for each population
(false normophonics and false dysphonics), whose accumulated distributions are given
in Figure 14.b, known as Tippett plots. Based on these distributions, the plots in Figure
14.c give the well-known variables of sensitivity, speci�city and accuracy, according to
the following relations:
where TP, FP, TN and FN are the number of true dysphonics, false dysphonics, true nor-
mophonics and false normophonics, respectively. These three functions are plotted in
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Figure 14.c, where the optimum detection point is the one where the accuracy is the
maximum. If the number of false dysphonics is plotted vs the number of false normo-
phonics the result is the template in Figure 14.d, which is known as the detection-error
trade-o� plot, because the speci�c situations combining false positives vs false negatives
is confronted for a set of critical threshold values. The number of these situations is 8,
and they are signaled in the plot. In fact, apart from the two points already analyzed (1
and 8), the rest of the cases is as follows:
2. False dysphonics jump up to 1/470, false normophonics do not change.
3. False dysphonics do not change, false normophonics drop to 2/470.
4. False dysphonics jump to 2/470, false normophonics do not change.
5. False dysphonics do not change, false normophonics drop to 1/470.
6. False dysphonics jump to 3/470, false normophonics do not change.
7. False dysphonics do not change, false normophonics drop to 0.

The optimal case is point 3, where the rates of false dysphonics and normophonics
are equal to 0.638% (equal error rate). The detection accuracy function is at its maximum
value of 99.57% at this point, for a threshold range between 62.08% and 75.04%, which
implies a reasonably wide noise margin.

Third experiment description:
• Matching each normative speaker’s sample (questioned) against every other nor-

mative sample (suspect: one target sample vs 49 non-target samples). Eliminating
repetitions, these settings imply 50 target detections vs 1,225 non-target detec-
tions.

• Using as model set (line-ups) the set of 50 normative speakers, to grant condition
(9) as much as possible.

Third experiment objective:
• Estimate the discrimination accuracy of the sample matching methodology in

target vs non-target detection tasks.
Third experiment results:
• False target vs false non-target detection cumulants, sensitivity, speci�city and

accuracy functions, and detection-error trade-o� plots given in Figure 15.
As before, the detection procedure consists in generating a vector with the log like-

lihood ratios (LLR) generated for each sample, and their assumed condition of target or
non-target. No normalization of the threshold span has been carried out in this case.

61



Gómez, P. et al. - Using Dysphonic Voice to Characterize Speaker’s Biometry
Language and Law / Linguagem e Direito, Vol. 1(2), 2014, p. 42-66

Figure 15. a) False positive vs false negative cumulants. b) Associated Tippet plots.
c) Sensitivity, speci�city and accuracy for the third experiment. d) Detection-error
trade-o� curve. (Figure produced by authors.)

The information provided by Figure 15 once the experimental conditions are �xed, can
be summarized as follows:
a. The rate of false positives (in red) gives the evolution of the non-target cases detected

equivocally as targets, as the detection threshold for the log likelihood ratio is mov-
ing from left to right. Given the relatively large number of non-target cases (1,225)
the evolution of this curve is a smooth decay (inverted sigmoid), expressing that its
distribution function will be bell-shaped. On the contrary the low number of target
cases (50) given by the blue curve shows slight jumps as the threshold is moving,
incorporating new targets as if they were non-targets (false negatives). Both curves
cross at the threshold value of 10.88. This is the point of maximal accuracy, on the
sixth interval re�ected in 0, in the margin where the evidence supports strongly the
prosecutor’s vs the defender’s hypothesis. The detection methodology is maximally
accurate just at the beginning of that interval, availing the guarantee of the test. The
value of the accuracy function at that point is 99.29%.

b. The graphics given in template a) are given now as Tippett plots. They do not provide
any more information to what has been commented up to now, except stressing the
fact that the overlap between the two accumulated distributions is very low, granting
that at the cross-point the residual tail probabilities (p-values) are under 0.02 and
0.0057, well below the signi�cance level of 0.05.

c. The sensitivity (number of non-targets detected as targets over the total non-targets),
speci�city (number of targets detected as non targets over the total targets) and accu-
racy (number of the total targets and non-targets detected as such over the total cases)
are plotted as a function of the threshold. The accuracy is very large for the margin
of strong support of the prosecutor’s hypothesis vs the defender’s, with a maximum
at 99.29% and not being below 96.08% in any case.
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d. The detection-error trade-o� curve is shown with a staircase pattern given the spe-
ci�c design of the test. The log likelihood ratios and the corresponding false positive
and negative rates are given in Table 9.

Points in the intersection interval between the false posi-
tive and false negative curves
Point False Positive Rate (%) False Negative Rate (%) Log Likelihood Ratio

1 2.0 0.98 10.92
2 2.0 0.90 11.85
3 2.0 0.82 13.06
4 2.0 0.73 13.35
5 2.0 0.65 13.67
6 2.0 0.57 14.84
7 4.0 0.57 15.36
8 6.0 0.57 16.41
9 8.0 0.57 16.79
10 10.0 0.57 17.53
11 10.0 0.49 17.98
12 12.0 0.49 18.61
13 14.0 0.49 19.49
14 16.0 0.49 20.46
15 18.0 0.49 20.91
16 20.0 0.49 21.48
17 20.0 0.41 21.96
18 22.0 0.41 22.05
19 24.0 0.41 22.59
20 26.0 0.41 22.88
21 26.0 0.33 22.94
22 28.0 0.33 23.33
23 30.0 0.33 23.45
24 30.0 0.24 24.33
25 32.0 0.24 24.55
26 34.0 0.24 24.66

Table 9. List of points in the intersection interval between the false positive and false
negative curves.

The equal-error-rate is not easily determined in this case due to the abrupt staircase
behavior of the transition interval in the case of false positive rate. Nevertheless several
merit �gures may be inferred, for instance, it will be possible to sustain a rate of 2% false
positives with a rate of 0.57% false negatives (point 6). This means that accepting an
error of one negative in 50 taken as positive grants an error of one positive in 175 taken
as negative. The merit �gures of both the second and third experiments are given in
Table 10.

Conclusions
The process of speaker recognition from speech is a complex matter, as far as the co-
articulation involved in message coding expands the limits of intra-speaker variability.
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Experiment Samples No. Tests Accuracy
(%)

LLR EER p-values

First 50N + 50D 90 Samples vs
Model x 10
times cross-val.
= 900

99.57 NA 0.638
(3)

0.00638,
0.00638

Second 50N + 50D 50 Samples vs
each: 51∗50/2
= 1275 (50 tar-
get + 1225 non-
target)

99.29 10.88 NA 0.02,
0.0057

Table 10. Summary of results for the second and third experiments.

This problem can be alleviated if biometrical markers are de�ned in relation with phona-
tion, as this phenomenon is less variable for a given speaker, depending only on phona-
tory settings (creaky, modal, pressed, falsetto, etc). Phonation may experience changes
from aging as well as from hormonal status, tobacco, drugs or alcohol consumption, vo-
cal abuse, infections, allergies, other health status conditions, and even circadian cycles
(phonation late in the evening is not the same as during the �rst hours after waking up).
It must be assumed that no forensic voice analysis system can realistically manage all
this variability, as most of the times the questioned evidence is just a segment of poor
quality conversation, and not much more. Regarding the modeling of suspect’s evidence,
it would be possible sometimes to obtain speech samples under di�erent conditions and
in di�erent sessions, but this is not possible most of the time. Our group has conducted
multisession tests in very speci�c collaborative situations such as twins’ voice studies
(San Segundo and Gómez, 2013; San Segundo, 2014) trying to simulate various possi-
ble forensic scenarios. Furthermore, for the current study session variability has been
taken into account as far as parameter selection is concerned. Our study is based on 68
phonation parameters, from which some are very variable with phonation modality and
condition, while others are almost invariant to the alterations described. The parameters
used in the forensic phonation match have been previously selected according to prior
knowledge: for instance jitter, shimmer, noise-harmonic ratios, certain cepstral param-
eters, glottal source spectral pro�le, closure and contact defects, and low order tremor
are not very sensitive to temporal alterations, and can be safely used in these studies.
Focussing on phonation biometrical markers does not necessarily reduce the recogni-
tion capability of the methodology, as happens with �ngerprints. It is well known that
�ngerprint matching does not use the whole information available in a �ngerprint im-
age; on the contrary, only speci�c biometrical markers, known as minutias are involved
in pattern matching. In this way the process of �ngerprint matching becomes more
e�cient, accurate, robust and less computationally expensive (Jain et al., 1997). The ap-
plication of this deconstructive methodology to speech implies focussing on phonated
speech, rather than in the whole set of voiced and unvoiced patterns. Furthermore, from
phonated speech only long vowels close to the axis /a/-/e/ were considered in the present
study. These are some of the conclusions derived from the experimental setup used in
the study:
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• The detection of dysphonic voicing from normophonic seems viable using pa-
rameterizations of phonation based on the reconstruction of the glottal source.

• The sensitivity, speci�city and accuracy in detecting dysphonic phonation are
large enough to grant using phonated segments of speech as long vowels and
�llers in forensic voice matching over su�ciently wide detection spans.

• The parameterizations of /a/ and /e/ groups of vowels are interchangeable to a
paired test extent, to be used in cross-matching tests with no signi�cant statistical
di�erences.

• The accuracy of target vs non-target sample phonation matches grants the ap-
plicability of these tests to real forensic cases.

• The margin of optimal log likelihood ratios granting the strength of phonation
evidence over 4 in Lucy’s scale (Lucy, 2005) allows its applicability under robust
conditions.

• The matching of questioned vs suspect’s evidence in reference to line-ups may be
summarized in meaningful 2D plots of simple and easy interpretation, granting
the reliability and security of the procedure regarding court standards.

• Hybridizing scores from speech and phonation standards as MFCC’s and glot-
tal source derived parameters may attain competitive low equal error rates over
telephone-quality speech (Khoury et al., 2013).

The proposed methodology for voice pathology detection and monitoring, as well as
for forensic voice inspection is being used by police services in Spain and other academic
and private institutions (Gomez-Vilda et al., 2012).
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